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I. Introduction 

In today's society, the use of electronic commerce, transaction of monetary assets and daily use of email is rapidly 
increasing. Along with the increased ease of purchasing and selling, there is also an increase in fraud mostly from false 
identification. Solutions to this problem has been in the field of biometrics, using the person's body as a form of 
identification. In particular, the uniqueness of fingerprints have made them very popular among law enforcement, banking 
establishments, and commerce. 

The purpose of this project was to design a fingerprint recognition system capable of discerning the identity of fingerprints 
and able to reject fingerprints for rescanning. The goal was to implement the system in hardware with a DSP applications 
specific chip. This report describes an implementation of a fingerprint recognition system and contains an analysis of the 
results. 

II. Problem Description 

Fingerprints are commonly classified as 5 different types: whorl, left loop, right loop, arch, and tented arch. For most 
recognition systems, difficulties arise in distinguishing between fingerprints of the same type. Many recognition systems find 
minutiaes, the ridge stops or breaks, in a fingerprint to identify a fingerprint. Because the number of minutiaes vary among 
fingerprints, this lends to a variable length of features extracted [1]. This results in difficulties in devising a classification 
system and database storage. The system we have implemented yields a fixed length of features from which many 
classification schemes can be applied. 

For both our system and the minutiae-based systems, the center point of the fingerprint is important to find for reference in 
obtaining features. The algorithm for center point determination should be consistent and the system must be "shift-
tolerable". 

Most of the difficulties for fingerprint recognition systems is in the obtaining of the fingerprint image. Plastic distortion, 
scanning artifacts, scanning resolution, rotation, and uneven pressure are examples of issues that a system has to resolve in 
order to maintain consistent results. 

Also, fingerprint recognition is a type of image processing which in itself requires memory and computational power. For 
reasonable performance in speed, a recognition system has to take into consideration these parameters as well. 

III. Design 
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As was stated previously, this system will be able to identify the owner of a fingerprint with reasonable accuracy and will 
have the ability to reject a fingerprint when the system is "unsure" of it's results. The system presented has been divided into 
three stages: preprocessing of a fingerprint image, extraction of the features that represent the fingerprint, and the 
classification of the fingerprint for a decision or a rejection. 

 
The figure above shows our system flow design. 

A. Preprocessing 

The fingerprint image to be processed needs a resolution of 500dpi so that will at least 10 pixels are between ridges. 
This is necessary for the feature extraction stage of our design. Because the center point of a fingerprint varies widely 
amongst individuals, the whole fingerprint must be obtained. We took a 400x400 grayscale fingerprint image for 
processing which is enough to capture the whole fingerprint. 

1. Center Point Determination & Cropping 

The first step is to find the center point of a fingerprint. Centerpoint location is done to find the point of most 
curvature by determining the normals of each fingerprint ridge, and then following them inwards towards the 
center. The following is the procedure we used [2]. 

■ Apply a pixel-wise adaptive 2-D Gaussian lowpass Wiener filter to the fingerprint. The filter uses 
neighborhoods of size 5 by 5 to estimate the local gradient mean and standard deviation. This will help 
in reducing any noise that may cause spurious results in the following gradient calculations. 

■ Divide the input fingerprint image into non-overlapping blocks of size 10x10. 

■ Determine the x and y magnitudes of the gradient at each pixel in each block, Gx and Gy. This is done 

by taking the average of the two neighboring pixels. 

■ Apply the same 2-D Gaussian lowpass filter on the x and y gradients as above to smooth out the 
gradients. 

■ With each block, compute the slope perpendicular to the local orientation of each block using the 
following formula. 
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■ Only looking at blocks with slopes with values ranging from 0 to π/2, trace a path down until you 
encounter a slope that is not ranging from 0 to π/2 and mark that block. 

■ The block that has the highest number of marks will compute the slope in the negative y direction and 
output an x and y position which will be the center point of the fingerprint. 

  

Once this point is determined, we then move it down by 30 pixels because the next step of pre-processing 
ignores any pixels within a 12 pixel radius of the psuedo-center. If we did not move the center point, that part 
of the image which we feel has the most information would be lost. The image is then cropped to a 255x255 
image centered around this pseudo-center point. This particular size is for radix-2 FFT operations for the 
feature extraction procedure where we'll pad an extra row and column of zeros. The size has an odd height 
and width such that the next step of sectorization will have a center pixel. 

Notice that this algorithm does not determine the orientation of the whole fingerprint. We are assuming that all 
input images will have the same orientation before processing. 

2. Sectorization and Normalization 

The cropped fingerprint image is divided into 5 concentric bands centered around the pseudo-center point. 
Each of these bands has a radius of 20 pixels, and a center hole radius of 12 pixels. Thus, the total radius of 
the sectorization is 223 pixels. Each band is evenly divided into 12 sectors. The center band is ignored. 

This process of sectorization is done because of the feature extraction section. 6 equi-angular Gabor filters will 
be used which will align with the 12 wedges formed by the bands. In other words, each sector will capture 
information corresponding to each Gabor filter. The center band is ignored because it has too small an area to 
be of any use. 

The radius of the sectorization was chosen to avoid the effects of circular convolution in applying a Gabor 
filter. This will be explained in more detail in the next section. All in all, we are left with a total of 60 sectors 
(12 wedges × 5 bands). 
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The three figures above show the 60 different sectors, the original fingerprint and the normalized fingerprint 
respectively. 

Another reason for sectorization is for normalization purposes. Each sector is individually normalized to a 
constant mean and variance to eliminate variations in darkness in the fingerprint pattern, due to scanning noise 
and pressure variations. And all the pixels outside of the sectormap is considered to be one giant sector. This 
will yield in an image that is more uniform. The following is the equation which we used for normalization of 
each pixel. We used a constant mean M0 and variance V0 of 100. i is the sector number, Mi is the mean of 

the sector, and Vi is the variance of the sector. 

 

B. Feature Extraction 

1. Gabor Filterization 

We then pass the normalized image through a bank of Gabor filters. Each filter is performed by producing a 
33x33 filter image for 6 angles (0, π/6, π/3, π/2, 2π/3 and 5π/6), and convolving it with the fingerprint image. 
Spatial domain convolving is rather slow, so multiplication in the frequency domain is done; however, this 
involves more memory to store real and imaginary coefficients. 

 

The purpose of applying Gabor filters is to remove noise while preserving ridge structures and providing 
information contained in a particular direction in the image. The sectorization will then detect the presence of 
ridges in that direction. 

As was discussed before, the sectorization size of 223 was derived to avoid the effects of circular 
convolution. Because the size of each Gabor filter is 33x33, we only have to worry about 16 pixels aliasing 
over each side of the image. The Gabor filter also has an odd height and width to maintain its peak center Generated by www.PDFonFly.com at 3/18/2012 7:35:37 AM
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point. The following is the definition of the Gabor filter we are using [3]. 

 

The parameters, δx and δy were empirically determined and were both set to 4.0. Too small a value will make 

the filter ineffective in removing noise while too large a value will destroy ridge and furrow details. The 
frequency of the cosine envelope is determined by the inverse of the distance of two ridges. We found that the 
distance to be on average 10 pixels. 

2. Sectorization and Variance Calculation 

After we get the 6 filtered images, we calculate the variance of the pixel values in each sector. This will tell us 
the concentration of fingerprint ridges going in each direction in that part of the fingerprint. A higher variance in 
a sector means that the ridges in that image were going in the same direction as is the Gabor filter. A low 
variance indicates that the ridges were not, so the filtering smoothed them out. The resulting 360 variance 
values (6 × 60) as the feature vector of the fingerprint scan. 

The following is the equation for variance calculation. Fiθ are the pixel values in the ith sector after a Gabor 

filter with angle θ has been applied. Piθ is the mean of the pixel values. Ki is the number of pixels in the ith 

sector. 

 

C. Classification 

The feature vector received from feature extraction is a compact representation of the fingerprint image we received. 
The next step is to classify the fingerprint to an owner or reject the fingerprint for rescanning. 

We have thought of various classification methods such as finding the Maximum Likelihood using Gaussian pdf 
approximation, Kth-Nearest Neighbor and Mean Nearest Neighbor (MNN). We finally decided to use the MNN 
method after considering the memory and computation issues. 

1. Mean Nearest Neighbor 

In this classifier, the mean of all of the feature vectors from each class (each individual person) is calculated 
from the training set and then saved in our database for future matching. When given a fingerpint, we find the 
Euclidean distance between the target feature vector and each class in our database, and choose the class that 
yields the lowest distance as the match. 

Compared to the other classification schemes we looked into, the mean nearest neighbor required the least 
number of calculations to yield a result. It also required the least storage since it is a sufficient statistic of the 
training set (only one feature vector for each class needed). This classifier does not take into consideration the 
variations within the same class of fingerprints. But after some tests we ran, which will be commented on later, 
the mean nearest neighbor classifier is sufficient enough for this project. 

2. Threshold Determination 

A fingerprint may be rejected due to two reasons. First, the fingerprint may not be in the database and thus 
the classifier should not classify it to any of the classes in the database. Second, the fingerprint may be in the 
database but its quality is so bad that the classifier is not able to confidently classify it to the right class. In this 
case, it is better for the classifier to reject the fingerprint and request another print. By "bad" qulity, we refer to 
prints that have too much distortion in it or their center points were determined incorrectly. To do this, we Generated by www.PDFonFly.com at 3/18/2012 7:35:37 AM
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have two threshold values that both must fail in order for a rejection to occur. 

One check is if the minimum distance (best match) is too high. We will reject this fingerprint as not being in our 
database, since the feature is not close enough to be anything. The threshold value we use is determined by 
eyeballing some actual values received from our training set. 

The second check is the difference in distance between the best match and the second best. If this value is not 
high enough (i.e. the best match does not stick out enough from the rest), we are better off not choosing 
anything. As can be seen, tuning of these thresholds should depend on exactly how large a variation in 
Euclidean distance can occur between scans from the same fingerprint. 

By studying the distances of our training set we obtained the following thresholds for rejection. If the euclidean 
distance for the best match is above 330,000 AND if the difference between the best match and the next best 
match is below 50,000, we will reject the fingerprint. 

IV. Implementation 

A. Fingerprint Database Collection 

For this project, we gathered from 31 individuals, 35 fingerprints each by using an inkpad and paper. We asked 
each person to press their right thumb on the paper without rolling the finger. The reason why we did not roll the 
finger was because of a warning from Professor Casasent telling us that rolled prints have plastic distortion. Upon 
examination of a few test prints, we were pleased with the resulting inkprints. 

We then scanned each fingerprint taking into consideration the orientation so that our system will not have to deal 
with rotation. Each image was saved as a 400x400 pixel 8-bit grayscale image scanned at 500dpi. A record of what 
types of fingerprints we collected is shown in the table below. The reject class is an extra set of fingerprints that was 
collected to train and test the system's ability to reject a fingerprint that is not part of the database. 

The set of 35 fingerprints from each class is partitioned into a training set and testing set. The training set consists of 
30 prints that is further divided into two sets of 25 prints and 5 prints. The 25 prints are used to form the database 
and the other 5 prints are used to determine the threshold for rejection and tuning of the algorithm's parameters. We 
also used the 30 fingerprints from the reject class to help determine the threshold to use. Based on the output from 
our matcher, we noticed that a fingerprint is usually misclassified when the fingerprint is too far away from best match 
and the distance between the best and next best match are too close. By studying the output of the matcher based on 
the 30 training fingerprints, we obtained the thresholds for rejection. 

The remaining 5 unused prints are then used to compile a confusion matrix to determine the performance of the 
system. The matrix is shown in the results section. 

B. Hardware 

The hardware we used for this recognition system was a PC and an Analog Devices Sharc (Super Harvard 
Architecture Computer) DSP 21062 EZ-LAB Development board [7] developed by Bittware, Inc. We also 
acquired the use of scanners that were publicly available as well as the traditional inkpad and paper for printing. 

class0 - Whorl   class10 - Twin Loop (Whorl)   class20 - Arch

class1 - Left Loop   class11 - Whorl   class21 - Whorl

class2 - Whorl   class12 - Whorl   class22 - Whorl

class3 - Whorl   class13 - Whorl   class23 - Left Loop

class4 - Whorl   class14 - Whorl   class24 - Whorl

class5 - Twin Loop (Whorl)   class15 - Left Loop   class25 - Right Loop

class6 - Whorl   class16 - Right Loop   class26 - Left Loop

class7 - Whorl   class17 - Left Loop   class27 - Left Loop

class8 - Left Loop   class18 - Left Loop   class28 - Whorl

class9 - Whorl   class19 - Whorl   class29 - Left Loop

reject - Left Loop
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Memory is also an important component in our design because of the intensive image processing. The following is the 
breakdown of major memory usage needed for the whole algorithm. 

We attempted to purchase a CHUM 16Meg Memory Expansion card from Bittware, Inc. but later found out that 
our development board was not compatible with it [8]. In interest of time and monetary funds, we fell back to using 
the PC for memory storage and have the Sharc board do all the computations. In doing so, speed was sacrificed. 

The advantage in using the SHARC development board over the TI C30 EVM boards is in the amount of memory 
on-chip (64K words) and in the user-friendliness of documentation and software compilers. The learning curve in 
using the SHARC is very steep. 

C. Software 

The C compiler libraries for the Sharc board that we have were compiled with a 16-bit instruction set. Therefore, we 
hit the 640K conventional memory limit very quickly and the usage of XMS (Extended memory) is needed. This 
further slows down memory access due to memory page swapping. The major bottleneck in this system is the 
memory swapping required between the Sharc and the PC. 

Borland C++ v5.0 was obtained for a C compiler that is compatible with 16-bit DOS compiling and has libraries for 
XMS memory allocation. The Sharc board comes with its own compiler and linker. C code was written and 
compiled from scratch except for the code for XMS which was obtained from Borland's web site [9]. 

Due to memory constraints on the SHARC board, not all of the code are loaded all at once. The algorithm is split 
into 4 parts: Sectorization and Normalization, Gabor Filter Generation, FFT Algorithms, and Convolution with FFT 
Shifting. Each of these parts are loaded onto the Sharc board when needed. The center point determination is done 
in MATLAB and the classification is done in C on the PC. 

Not only is this algorithm implemented on the Sharc board, it is also implemented in MATLAB and in C++. Code 
can be obtained below. 

V. Results 

The time to extract the features of one fingerprint takes on average 4 minutes 30 seconds on a Pentium 166 non-MMX 
with 128Megs of EDO RAM. The following confusion matrix was obtained on an equivalent system developed purely in C 
on a Linux machine without the use of the Sharc board. For that system, it takes less than 2 seconds to extract the features. 
For the equivalent system in MATLAB, it takes 40 seconds. 

Summary of Results 

With thresholds, there are 12 rejected and 7 misclassified fingerprints out of a total of 155 prints. Thus we achieved an 
accuracy of 95.1% without including those rejected fingerprints. 

Without thresholds, there are 13 misclassified fingerprints out of a total of 155 prints. Thus we will only achieve an accuracy 
of 91.6% if the system doesn't allow for rejection of fingerprints. 

Confusion matrix - Best Match 

        |                     Classified as Class 

Size Words Purpose

2×256×256 = 131072 Padded Fingerprint(Real & Imag)

2×256×256 = 131072 Padded Gabor Filter(Real & Imag)

6×60 = 360 Features

Total 262504 floats × 4 bytes each ~ 1 MB
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--------+--------------------------------------------------------------- 
class#  |                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 R 
        | 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 J 
--------+--------------------------------------------------------------- 
class0  | 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
class1  | - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
class2  | - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
class3  | - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - 1 
class4  | - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - 
class5  | - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - 
class6  | - - - - - - 1 - - - - - - - 1 - - - - - - - - - - - - - - - 3 
class7  | - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - 1 
class8  | - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - 
class9  | - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - - 
class10 | - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - 
class11 | - - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - 
class12 | - - - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - 
class13 | - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - 1 
class14 | - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - 1 
class15 | - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - - - 
class16 | - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - - 
class17 | - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - 
class18 | - - - - - - - - - - - 1 - - - - - - 4 - - - - - - - - - - - - 
class19 | - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - 
class20 | - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - 
class21 | - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - 3 
class22 | - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - 
class23 | - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - 
class24 | - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - 
class25 | - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - 
class26 | - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - 
class27 | - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 4 - - - 
class28 | - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - 4 - - 
class29 | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - 
reject  | - - - - - - - - - - - - - - - - - - - 1 - - - - 2 - - - - - 2 

NOTE: The reject class is not in the database. 

Misclassification between types of Prints 

1 fingerprint in class6 is misclassified as class14. Both are whorls. 
1 fingerprint in class18 is misclassified as class11. They are left loop and whorl respectively. 
1 fingerprint in class27 is misclassified as class8. Both are left loops. 
1 fingerprint in class28 is misclassified as class11. Both are whorls. 
1 fingerprint in class30 is misclassified as class19. Both are left loops. 
1 fingerprint in class30 is misclassified as class19. They are left loop and whorl respectively. 
2 fingerprint in class30 is misclassified as class24. They are left loop and whorl respectively. 

As seen above, misclassification tends to happen within the same type of fingerprints. The reason for the cross-type 
misclassification in class30 is that the fingerprints in that class are of very bad quality. The centerpoints are off and the ridges 
are smeared by ink. Class 6's center point determination was varying a lot (greater than 50 pixels) which also accounts for 
the high number of rejects. 

However, a test was run by calculating the distance of a fingerprint with itself with its center point shifted by 10 pixels. The 
result is a distance of 160000 which is significantly below most best match distances which are on the order of 300000. 

Whitespaces in cropped images 

Because we obtained fingerprints by just pressing the finger down instead of rolling it, many of our fingerprints are 
incomplete and contain whitespaces due to the center point being close to the edge of the finger. Some of the subjects have 
small thumb size and thus whitespaces are used to fill up the 256x256 image. However, these whitespaces do not affect the 
performance of the system since they are consistently present. Gabor filtering will just not detect any ridges in those 
whitespaces which will accurately represent the fingerprint we obtained. 
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NOTE: Each of the 5 fingerprints not rejected by the system has a 2nd best match. This is a list of 2nd best matches and 
which type they correspond to. 
W = Whorl, L = Left loop, R = Right loop, A = Arch, NM = No Match 

             |    Print#     |   Print type  |     
---------------------------------------------- 
class#  |type| 1  2  3  4  5 | 1  2  3  4  5 | 
---------------------------------------------- 
class0  | W  |21  5  3 11  5 | W  W  W  W  W  
class1  | L  |19  8  8  8 23 | W  L  L  L  L ** 
class2  | W  |13 13 13 13 13 | W  W  W  W  W 
class3  | W  |28 28 NM 28 21 | W  W NM  W  W 
class4  | W  |11 11 19 11 11 | W  W  W  W  W 
class5  | W  | 0  0 11  0  0 | W  W  W  W  W 
class6  | W  |21 NM 13 NM NM | W NM  W NM NM 
class7  | W  |14 14 NM 14 14 | W  W NM  W  W 
class8  | L  | 1 27 27 27  1 | L  L  L  L  L 
class9  | W  |22  3  0  3 22 | W  W  W  W  W 
class10 | W  |12 12 12 12 12 | W  W  W  W  W 
class11 | W  | 0  0  4  0  4 | W  W  W  W  W 
class12 | W  |10 28 11 10 11 | W  W  W  W  W 
class13 | W  | 2  2 NM  2 19 | W  W NM  W  W 
class14 | W  |NM 21 22  7  2 |NM  W  W  W  W 
class15 | L  |26 27 26 26 26 | L  L  L  L  L 
class16 | R  |25 25 25 25 25 | R  R  R  R  R * 
class17 | L  |15 29 15 29 29 | L  L  L  L  L 
class18 | L  |12 23 19 19 19 | W  L  W  W  W ** 
class19 | W  |13 13 13 13 13 | W  W  W  W  W 
class20 | A  |18 18 18 18 18 | L  L  L  L  L *** 
class21 | W  |22 NM 22 NM NM | W NM  W NM NM 
class22 | W  |14  2 14 14 14 | W  W  W  W  W 
class23 | L  |19 19 19 19 19 | W  W  W  W  W ** 
class24 | W  |21  2 21 21 21 | W  W  W  W  W 
class25 | R  |16 16 16 16 16 | R  R  R  R  R * 
class26 | L  |15 27  1 27 27 | L  L  L  L  L 
class27 | L  |26 26 27 15 26 | L  L  L  L  L 
class28 | W  | 3  3  3  3  0 | W  W  W  W  W 
class29 | L  |17 17 17  1 17 | L  L  L  L  L 
reject  | L  |NM 25 19 NM 19 |NM  R  W NM  W  

NOTE: Reject class is not in the database 

The 2nd best match of most classes belongs to the same type of print. This is particularly obvious for class16 and class25. 
Since they are the only right loops in the whole database, we expect them to be the next closest match of each other. See 
(*). 
Class19 is ambiguous in the sense that it looks both like a whorl and a left loop. This accounts for the inconsistency that is 
observed in (**). 
Class20 is the only arch type fingerprint in the database (***). The next best match is consistently found to be class18. 
The next best match for class30 is not L because ridges in the prints are smeared due to bad pressing of finger. Center 
point location for this class of finger is badly done too. 

Comments on no Matches 

NOTE: The following table lists all of the Rejects/No Matches produced. In addition, it also shows which best match and 
second best match produced before being rejected. 

----------------------------------------------------------------------- 
Class#-Print#   | Best Match | 2nd Best Match | B.M Type | 2.B.M Type | 
----------------------------------------------------------------------- 
Class3-3  (W)   |      0     |        3       |    W     |     W      |   
Class6-2  (W)   |      7     |        6       |    W     |     W      |   
Class6-4  (W)   |      7     |        6       |    W     |     W      |   
Class6-5  (W)   |      7     |        6       |    W     |     W      |   
Class7-3  (W)   |      7     |       14       |    W     |     W      |   
Class13-3 (W)   |     13     |        2       |    W     |     W      |   
Class14-1 (W)   |     14     |        7       |    W     |     W      |   
Class21-2 (W)   |     21     |       22       |    W     |     W      |   
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Class21-4 (W)   |     21     |       22       |    W     |     W      |   
Class21-5 (W)   |     21     |       22       |    W     |     W      |   
Class30-1 (L)   |     25     |       19       |    R     |     W      |   
Class30-4 (L)   |     23     |       11       |    L     |     W      |   
----------------------------------------------------------------------- 

VI. Conclusion 

This project was a good learning experience for all of us in the group. Besides learning new Signal Processing topics such 
as Pattern Recognition, Gabor Filtering, and multiple classification schemes, we also learned that in real life, projects such 
as this one need other factors such as team work, time management, and modular programming. 

Given the chance to build a similar system again, we would use a different algorithm for the center point determination that 
is more consistent and robust. To speed up the system, we can save pre-FFTed Gabor filters somewhere to reduce the 
need to recompute them for every fingerprint input. Doing so will save 60% of the time required. 

We also found the Analog Device's SHARC board very easy to use and a time-saver relieveing much of the strain in 
memory transferring issues and debugging. We severely recommend switching the course to using SHARC DSP boards. 

VII. Code - Sharc implementation 
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MATLAB portion 
Center point & 
cropping

cropscript.m Script to find center and crop 
center551.m Center point determiner 
imload.m Loads an 8-bit grayscale image file 
imdraw.m Draws an image to the screen 
imsave.m Saves an image as an 8-bit grayscale file 

SHARC portion 
Sectorization, 
Normalization, 
Gabor Filtering, 
Variance

extfeat.c Main loop to extract features (runs on PC) 
sectnorm.c Sectorization and Normalization for SHARC 
proj551.h Header file specific for sectnorm.c 
gaborgen.c Gabor Filter generation for SHARC 
gaborfft.c FFT code for SHARC 
trigtbl.h Header file holding trig tables for gaborfft.c 
convolve.c Convolution and FFTshift for SHARC 
ezlab.ach Architecture file for SHARC compilation 
ezlab2.ach Architecture file for SHARC compilation 
mkbcc.bat Script to compile extfeat.c using Borland C++ 
mksharc.bat Script to compile all the SHARC code using g21k 

PC portion 
Classification

pc_match.c Classification code that will match or reject 
proj551.h Header file for pc_match.c 
mkmatch.bat Script to compile pc_match.c using Borland C++ 
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